#FIG 3.2 Produced by xfig version 3.2.5b Landscape Center Metric A4 100.00 Single -2 1200 2 6 3060 3060 4590 4500 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 3060 3330 4500 3330 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 4500 4500 4500 3060 3060 3060 3060 4500 4500 4500 4 0 0 50 -1 0 14 0.0000 4 165 645 3150 3285 Package\001 4 0 0 50 -1 0 12 0.0000 4 180 810 3150 3510 .depth = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 1440 3150 3735 .logical_index =0\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 3150 3960 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 3150 4185 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 3150 4410 .arity=2\001 -6 6 4500 3375 8505 3915 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4500 3600 8415 3600 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 8415 3690 4500 3690 4 0 0 50 -1 0 12 0.0000 4 180 1035 4545 3510 next_sibling\001 4 0 0 50 -1 0 12 0.0000 4 180 1035 7470 3870 prev_sibling\001 -6 6 7290 2250 8640 2610 4 2 0 50 -1 0 12 0.0000 4 165 810 8640 2565 last_child\001 4 2 0 50 -1 0 12 0.0000 4 165 900 8190 2385 children[1]\001 -6 6 2205 4590 3285 4950 4 0 0 50 -1 0 12 0.0000 4 165 900 2385 4725 children[0]\001 4 0 0 50 -1 0 12 0.0000 4 165 840 2205 4905 first_child\001 -6 6 4185 4590 5265 4950 4 0 0 50 -1 0 12 0.0000 4 165 900 4185 4725 children[1]\001 4 0 0 50 -1 0 12 0.0000 4 165 810 4455 4905 last_child\001 -6 6 7605 4590 8685 4950 4 0 0 50 -1 0 12 0.0000 4 165 900 7785 4725 children[0]\001 4 0 0 50 -1 0 12 0.0000 4 165 840 7605 4905 first_child\001 -6 6 4275 2250 5625 2610 4 0 0 50 -1 0 12 0.0000 4 165 840 4275 2565 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 4725 2385 children[0]\001 -6 6 4770 810 5445 1440 4 0 4 50 -1 0 12 0.0000 4 135 720 4770 945 Machine\001 4 0 4 50 -1 0 12 0.0000 4 135 405 4770 1170 level\001 4 0 4 50 -1 0 12 0.0000 4 180 675 4770 1395 depth=0\001 -6 6 2115 3150 2790 3780 4 0 4 50 -1 0 12 0.0000 4 135 555 2115 3285 Package\001 4 0 4 50 -1 0 12 0.0000 4 135 405 2115 3510 level\001 4 0 4 50 -1 0 12 0.0000 4 180 675 2115 3735 depth=1\001 -6 6 3105 5625 4455 6795 6 3105 5625 4455 6165 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3105 5850 4365 5850 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4365 5940 3105 5940 4 0 0 50 -1 0 12 0.0000 4 180 1035 3150 5760 next_sibling\001 4 0 0 50 -1 0 12 0.0000 4 180 1035 3420 6120 prev_sibling\001 -6 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3105 6480 4365 6480 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4365 6570 3105 6570 4 0 0 50 -1 0 12 0.0000 4 165 1005 3150 6390 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 3375 6750 prev_cousin\001 -6 6 5805 6255 7110 6795 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5805 6480 7065 6480 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 7065 6570 5805 6570 4 0 0 50 -1 0 12 0.0000 4 165 1005 5850 6390 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 6075 6750 prev_cousin\001 -6 6 765 5490 1440 6120 4 0 4 50 -1 0 12 0.0000 4 135 510 765 5625 Cache\001 4 0 4 50 -1 0 12 0.0000 4 135 405 765 5850 level\001 4 0 4 50 -1 0 12 0.0000 4 180 675 765 6075 depth=2\001 -6 6 4230 6930 5130 7560 4 0 0 50 -1 0 12 0.0000 4 165 840 4230 7290 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 4230 7515 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 4230 7065 children[0]\001 -6 6 6930 6930 7830 7560 4 0 0 50 -1 0 12 0.0000 4 165 840 6930 7290 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 6930 7515 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 6930 7065 children[0]\001 -6 6 1530 6930 2430 7560 4 0 0 50 -1 0 12 0.0000 4 165 840 1530 7290 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 1530 7515 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 1530 7065 children[0]\001 -6 6 9765 7740 11340 9180 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 9765 8010 11205 8010 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 11205 9180 11205 7740 9765 7740 9765 9180 11205 9180 4 0 0 50 -1 0 14 0.0000 4 165 465 9855 7965 Core\001 4 0 0 50 -1 0 12 0.0000 4 180 630 9855 9090 .arity=1\001 4 0 0 50 -1 0 12 0.0000 4 180 810 9855 8190 .depth = 3\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 9855 8415 .logical_index = 3\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 9855 8640 .os_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 9855 8865 .sibling_rank=0\001 -6 6 5805 8595 7110 9135 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5805 8820 7065 8820 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 7065 8910 5805 8910 4 0 0 50 -1 0 12 0.0000 4 165 1005 5850 8730 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 6075 9090 prev_cousin\001 -6 6 765 7830 1440 8460 4 0 4 50 -1 0 12 0.0000 4 135 390 765 7965 Core\001 4 0 4 50 -1 0 12 0.0000 4 135 405 765 8190 level\001 4 0 4 50 -1 0 12 0.0000 4 180 675 765 8415 depth=3\001 -6 6 4230 9270 5130 9900 4 0 0 50 -1 0 12 0.0000 4 165 840 4230 9630 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 4230 9855 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 4230 9405 children[0]\001 -6 6 6930 9270 7830 9900 4 0 0 50 -1 0 12 0.0000 4 165 840 6930 9630 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 6930 9855 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 6930 9405 children[0]\001 -6 6 1530 9270 2430 9900 4 0 0 50 -1 0 12 0.0000 4 165 840 1530 9630 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 1530 9855 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 1530 9405 children[0]\001 -6 6 9630 9270 10530 9900 4 0 0 50 -1 0 12 0.0000 4 165 840 9630 9630 first_child\001 4 0 0 50 -1 0 12 0.0000 4 165 810 9630 9855 last_child\001 4 0 0 50 -1 0 12 0.0000 4 165 900 9630 9405 children[0]\001 -6 6 9765 10080 11340 11520 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 9765 10350 11205 10350 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 11205 11520 11205 10080 9765 10080 9765 11520 11205 11520 4 0 0 50 -1 0 12 0.0000 4 165 1095 9855 10980 .os_index = 3\001 4 0 0 50 -1 0 14 0.0000 4 165 315 9855 10305 PU\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 9855 11205 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 9855 11430 .arity=0\001 4 0 0 50 -1 0 12 0.0000 4 180 810 9855 10530 .depth = 4\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 9855 10755 .logical_index = 3\001 -6 6 3105 10935 4410 11475 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3105 11160 4365 11160 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4365 11250 3105 11250 4 0 0 50 -1 0 12 0.0000 4 165 1005 3150 11070 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 3375 11430 prev_cousin\001 -6 6 5805 10935 7110 11475 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5805 11160 7065 11160 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 7065 11250 5805 11250 4 0 0 50 -1 0 12 0.0000 4 165 1005 5850 11070 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 6075 11430 prev_cousin\001 -6 6 8505 10935 9810 11475 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 8505 11160 9765 11160 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 9765 11250 8505 11250 4 0 0 50 -1 0 12 0.0000 4 165 1005 8550 11070 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 8775 11430 prev_cousin\001 -6 6 765 10170 1440 10800 4 0 4 50 -1 0 12 0.0000 4 135 240 765 10305 PU\001 4 0 4 50 -1 0 12 0.0000 4 135 405 765 10530 level\001 4 0 4 50 -1 0 12 0.0000 4 180 675 765 10755 depth=4\001 -6 6 9540 4590 10620 4950 4 0 0 50 -1 0 12 0.0000 4 165 900 9540 4725 children[1]\001 4 0 0 50 -1 0 12 0.0000 4 165 810 9810 4905 last_child\001 -6 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 5715 990 7155 990 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 7155 2160 7155 720 5715 720 5715 2160 7155 2160 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 9036 4488 7686 5388 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 9135 4500 7785 5400 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 8415 3330 9855 3330 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 9855 4500 9855 3060 8415 3060 8415 4500 9855 4500 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 6435 2160 3735 3060 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 6210 2160 3510 3060 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4500 4050 8415 4050 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 8415 4140 4500 4140 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3831 4492 5181 5392 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3636 4488 2286 5388 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5085 5400 3735 4500 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 3735 4500 2385 5400 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 6660 2160 9360 3060 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 6435 2160 9135 3060 2 2 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 5 10080 3015 2835 3015 2835 4545 10080 4545 10080 3015 2 2 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 5 7380 675 5490 675 5490 2205 7380 2205 7380 675 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 4365 5670 5805 5670 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 5805 6840 5805 5400 4365 5400 4365 6840 5805 6840 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 7065 5670 8505 5670 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 1665 5670 3105 5670 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 3105 6840 3105 5400 1665 5400 1665 6840 3105 6840 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 8505 6840 8505 5400 7065 5400 7065 6840 8505 6840 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 2340 6840 2340 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 2430 6840 2430 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5040 6840 5040 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 5130 6840 5130 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 7740 6840 7740 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 7830 6840 7830 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 4365 8010 5805 8010 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 5805 9180 5805 7740 4365 7740 4365 9180 5805 9180 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 7065 8010 8505 8010 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 1665 8010 3105 8010 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 3105 9180 3105 7740 1665 7740 1665 9180 3105 9180 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 8505 9180 8505 7740 7065 7740 7065 9180 8505 9180 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 2340 9180 2340 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 2430 9180 2430 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 5040 9180 5040 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 5130 9180 5130 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 7740 9180 7740 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 7830 9180 7830 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 10440 9180 10440 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2 1 1 1.00 60.00 120.00 10530 9180 10530 10080 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 4365 10350 5805 10350 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 5805 11520 5805 10080 4365 10080 4365 11520 5805 11520 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 7065 10350 8505 10350 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 8505 11520 8505 10080 7065 10080 7065 11520 8505 11520 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2 1665 10350 3105 10350 2 4 0 1 0 7 50 -1 -1 0.000 0 0 7 0 0 5 3105 11520 3105 10080 1665 10080 1665 11520 3105 11520 2 2 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 5 11385 10035 1485 10035 1485 11565 11385 11565 11385 10035 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 3105 8820 4365 8820 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 4365 8910 3105 8910 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 8505 8820 9765 8820 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 9765 8910 8505 8910 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 8505 5850 9765 8190 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2 1 1 1.00 60.00 120.00 9765 8325 8505 6030 2 2 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 5 8685 5355 1485 5355 1485 6885 8685 6885 8685 5355 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 4 1 1 1.00 60.00 120.00 9231 4492 10530 5400 10530 6840 10530 7740 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 4 1 1 1.00 60.00 120.00 9135 4500 10440 5400 10440 6840 10440 7740 2 2 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 5 11385 7695 1485 7695 1485 9225 11385 9225 11385 7695 4 2 0 50 -1 0 12 0.0000 4 165 510 8415 2970 parent\001 4 0 0 50 -1 0 12 0.0000 4 180 810 5805 1170 .depth = 0\001 4 0 0 50 -1 0 14 0.0000 4 165 825 5805 945 Machine\001 4 0 0 50 -1 0 12 0.0000 4 165 1155 5805 1620 .os_index = -1\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 5805 1845 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 5805 1395 .logical_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 5805 2070 .arity=2\001 4 0 0 50 -1 0 12 0.0000 4 165 510 8145 5310 parent\001 4 0 0 50 -1 0 12 0.0000 4 180 630 8505 4410 .arity=2\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 8505 3735 .logical_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 8505 3960 .os_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 810 8505 3510 .depth = 1\001 4 0 0 50 -1 0 14 0.0000 4 165 645 8505 3285 Package\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 8505 4185 .sibling_rank=1\001 4 0 0 50 -1 0 12 0.0000 4 165 510 4455 2970 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 1005 4545 3960 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 7470 4320 prev_cousin\001 4 0 0 50 -1 0 12 0.0000 4 165 510 2745 5310 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 4275 5310 parent\001 4 0 0 50 -1 0 12 0.0000 4 180 630 7155 6750 .arity=1\001 4 0 0 50 -1 0 14 0.0000 4 165 600 1755 5625 Cache\001 4 0 0 50 -1 0 14 0.0000 4 165 600 4455 5625 Cache\001 4 0 0 50 -1 0 14 0.0000 4 165 600 7155 5625 Cache\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 1755 6075 .logical_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 4455 6075 .logical_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 1755 6300 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 1755 6525 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 1755 6750 .arity=1\001 4 0 0 50 -1 0 12 0.0000 4 180 630 4455 6750 .arity=1\001 4 0 0 50 -1 0 12 0.0000 4 180 810 1755 5850 .depth = 2\001 4 0 0 50 -1 0 12 0.0000 4 180 810 4455 5850 .depth = 2\001 4 0 0 50 -1 0 12 0.0000 4 180 810 7155 5850 .depth = 2\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 7155 6075 .logical_index = 2\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 4455 6300 .os_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 4455 6525 .sibling_rank=1\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 7155 6300 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 7155 6525 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 165 510 2475 7650 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 5175 7650 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 7875 7650 parent\001 4 0 0 50 -1 0 12 0.0000 4 180 630 7155 9090 .arity=1\001 4 0 0 50 -1 0 14 0.0000 4 165 465 1755 7965 Core\001 4 0 0 50 -1 0 14 0.0000 4 165 465 4455 7965 Core\001 4 0 0 50 -1 0 14 0.0000 4 165 465 7155 7965 Core\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 1755 8415 .logical_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 4455 8415 .logical_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 1755 8640 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 1755 8865 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 1755 9090 .arity=1\001 4 0 0 50 -1 0 12 0.0000 4 180 630 4455 9090 .arity=1\001 4 0 0 50 -1 0 12 0.0000 4 180 810 1755 8190 .depth = 3\001 4 0 0 50 -1 0 12 0.0000 4 180 810 4455 8190 .depth = 3\001 4 0 0 50 -1 0 12 0.0000 4 180 810 7155 8190 .depth = 3\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 7155 8415 .logical_index = 2\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 4455 8640 .os_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 4455 8865 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 7155 8640 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 7155 8865 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 165 510 2475 9990 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 5175 9990 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 7875 9990 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 510 10575 9990 parent\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 1755 10980 .os_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 4455 10980 .os_index = 2\001 4 0 0 50 -1 0 12 0.0000 4 165 1095 7155 10980 .os_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 1755 11205 .sibling_rank=0\001 4 0 0 50 -1 0 14 0.0000 4 165 315 1755 10305 PU\001 4 0 0 50 -1 0 14 0.0000 4 165 315 4455 10305 PU\001 4 0 0 50 -1 0 14 0.0000 4 165 315 7155 10305 PU\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 4455 11205 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 1290 7155 11205 .sibling_rank=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 1755 11430 .arity=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 4455 11430 .arity=0\001 4 0 0 50 -1 0 12 0.0000 4 180 630 7155 11430 .arity=0\001 4 0 0 50 -1 0 12 0.0000 4 180 810 7155 10530 .depth = 4\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 7155 10755 .logical_index = 2\001 4 0 0 50 -1 0 12 0.0000 4 180 810 4455 10530 .depth = 4\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 4455 10755 .logical_index = 1\001 4 0 0 50 -1 0 12 0.0000 4 180 810 1755 10530 .depth = 4\001 4 0 0 50 -1 0 12 0.0000 4 180 1485 1755 10755 .logical_index = 0\001 4 0 0 50 -1 0 12 0.0000 4 165 1005 3150 8730 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 3375 9090 prev_cousin\001 4 0 0 50 -1 0 12 0.0000 4 165 1005 8550 8730 next_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1005 8775 9090 prev_cousin\001 4 0 0 50 -1 0 12 0.0000 4 180 1035 8820 8280 prev_sibling\001 4 0 0 50 -1 0 12 0.0000 4 180 1035 8730 6120 next_sibling\001 4 0 0 50 -1 0 12 0.0000 4 165 510 9945 7650 parent\001